
APPCONTROL: ENFORCING APPLICATION BEHAVIOUR
THROUGH TYPE-BASED CONSTRAINTS
Wim Vanderbauwhede1, José Cano1, Laura Voinea1, Nobuko Yoshida2, Martin Vassor2, Klaus
McDonald-Maier3, Xiaojun Zhai3, Ludovico Poli3, Michal Borowski3, Chandrajit Pal3
1University of Glasgow, 2University of Oxford, 3University of Essex

PROJECT OVERVIEW
CHERI capabilities provide fine-grained memory protection, limiting
access privileges of third-party applications. However, in order to
secure program interaction, since capabilities say nothing about
program behaviour, we use Behavioural Types to capture the
behavioural structure of application interfaces.

3rd-party library
Process B

memory space

System
memory space

Process A
memory space

Capability-based type constraint

Run-time behavioural type checking

Behavioural types ensure correctness of behaviour, provided that the
specification is correct. Debugging a specification-based system
demands the ability to debug the specification at run-time.

OUR APPROACH
Behavioural typing supports compile-time checking of program
behaviour when its implementation is known, and runtime checking of
program behaviour when it is not known.

▶ Develop a Rust API enabling use of CHERI Capabilities.
▶ Develop multiparty session type (MPST) theories and tools to en-

sure capability-based behavioural properties in Rust.
▶ Develop a framework to enable the monitoring and debugging of

capability-supporting Rust code.
▶ Use capabilities to support the unsafe parts of Rust (e.g. using FFIs

in session types)

CAPABLE LANGUAGE
We are interested in how CHERI-Style Capabilities interplay with
session types in imperative languages such as Rust/C.

Capable is a bare-bones imperative language with ML-style references
written in Idris2 as a intrinsically-scoped/typed EDSL. Capable is our
experimental language to see how the type-system should work.

ACKNOWLEDGEMENTS
The authors thank the UKRI Digital Security by Design (DSbD)
Programme for funding the AppControl project through grant
EP/V000462/1.

RUST API
The Rust API will connect MPSTs with CHERI’s memory control
capabilities. We identify socket layer system calls to be the most
important use case for monitoring adherence to the specification. As
Rust’s POSIX socket library is built on top of the C standard library, we
can address this by modifying the libC to communicate these calls to a
listening daemon. The daemon can maintain a finite-state machine
(FSM) determined by the specification.

Network

Modified C Standard Library

Rust Program
with MPSTs

Daemon

FSM

MPST IN RUST
▶ Developed Rumpsteak, a library for asynchronous MPST in Rust
▶ Support for refined protocols.
▶ Protocols generated from 3rd party library statically type-checked

for behavioural correctness, ensuring deadlock-freedom.
▶ We are currently adapting Rumpsteak for the Rust API, using capa-

bilities in refinements.

An example of refined protocol (excerpt):
choice at B{

More(x : int {x < n}) from B to C;
continue Loop;

} or {
Less(x : int {x > n}) from B to C;
continue Loop;

} or {
Correct(x : int {x = n}) from B to C;
continue Loop;

}

BEHAVIOURAL PROFILING AND ANOMALY DETECTION
▶ Extraction of program metrics from the custom implementation of

CHERI Flute based SoC.
▶ ZC706 board implementation of PYNQ wrapper for CHERI-RISC-V

Flute processor, utilizing Continuous Monitoring System (CMS) hard-
ware module for baremetal programs.

▶ Real-time oversight and control of CMS through GUI desktop app.
▶ Development of intelligent analytics framework (IAF).
▶ Verification framework for quantitative performance evaluation of

anomaly detection methods using adapted EEMBC Automotive 1.1
benchmark.

For more details please see the additional poster.

LEARN MORE

AppControl Capable Rumpsteak


