
APPCONTROL: ENFORCING APPLICATION BEHAVIOUR
THROUGH TYPE-BASED CONSTRAINTS
Wim Vanderbauwhede1, José Cano1, Jan de Muijnck-Hughes1, Laura Voinea1, Nobuko Yoshida2,
Martin Vassor2, Klaus McDonald-Maier3, Xiaojun Zhai3, Ludovico Poli3, Michal Borowski3
1University of Glasgow, 2University of Oxford, 3University of Essex

PROJECT OVERVIEW
CHERI capabilities provide fine-grained memory protection, limiting
access privileges of third-party applications. However, capabilities say
nothing about program behaviour. We use Behavioural Types to
capture the behavioural structure of application interfaces in order to
secure program interaction.

3rd-party library
Process B

memory space

System
memory space

Process A
memory space

Capability-based type constraint

Run-time behavioural type checking

Behavioural types ensure correctness of behaviour, provided that the
specification is correct. Debugging a specification-based system
demands the ability to debug the specification at run-time.

OUR APPROACH

▶ Investigate the interplay of CHERI capabilities and behavioural types
in capability-native languages (e.g. Rust, C) using experimental lan-
guage Capable. Capable is a barebones imperative language written
in Idris2 as a intrinsically-scoped/typed EDSL.

▶ Develop Behavioural APIs enabling use of CHERI Capabilities.
▶ Develop multiparty session type (MPST) theories and tools to en-

sure capability-based behavioural properties in capability native lan-
guages.

▶ Develop a framework to enable the monitoring and debugging of
capability-supporting code.

ACKNOWLEDGEMENTS
The authors thank the UKRI Digital Security by Design (DSbD)
Programme for funding the AppControl project through grant
EP/V000462/1 and Morello-Hat through grant EP/X015955/1.

RUST API
The Rust API will connect MPSTs with CHERI’s memory control
capabilities. We identify socket layer system calls to be the most
important use case for monitoring adherence to the specification. As
Rust’s POSIX socket library is built on top of the C standard library, we
can address this by modifying the libC to communicate these calls to a
listening daemon. The daemon can maintain a finite-state machine
(FSM) determined by the specification.

Network

Modified C Standard Library

Rust Program
with MPSTs

Daemon

FSM

MPST IN RUST
▶ Developed Rumpsteak, a library for asynchronous MPST in Rust
▶ Support protocol optimisation with message reordering
▶ Protocols generated from 3rd party library statically type-checked

for behavioural correctness, ensuring deadlock-freedom.
▶ We are currently adapting Rumpsteak for the Rust API.
▶ https://github.com/zakcutner/rumpsteak

A ring protocol in Rumpsteak:

1 type Source = Receive<T, Ready, Select<T, SourceChoice>>;

2 enum SourceChoice { Value(Value, Source),

3 Stop(Stop, End) }

4 type Sink = Send<S, Ready, Branch<S, SinkChoice>>;

5 enum SinkChoice { Value(Value, Sink),

6 Stop(Stop, End) }

DEBUGGER AND DIAGNOSTICS TOOLS
▶ Prototypes of non-intrusive, on-chip debug system for CHERI-RISC-V

processors.
▶ Extraction of program metrics from the custom implementation of

CHERI Flute based SoC.
▶ Touch screen control interface for dynamic configuration and overview

of the monitored system.
▶ ZC706 board implementation of PYNQ wrapper for CHERI-RISC-V

Flute processor, utilizing Continuous Monitoring System for baremetal
programs.

▶ Performance comparison of conventional and novel (e.g.
autoencoder-forest) abnormal behaviour detection methods.

PROJECT WEB SITE AND REPOSITORIES
https://dsbd-appcontrol.github.io/

https://github.com/DSbD-AppControl

MORELLO-HAT: HIGH-LEVEL API AND TOOLING
Wim Vanderbauwhede1, José Cano1, Cristian Urlea1, Nobuko Yoshida2, Martin
Vassor2, Klaus McDonald-Maier3, Xiaojun Zhai3, Ludovico Poli3, Michal Borowski3

The Morello-HAT project intends to create a common API that can be used by
compiler developers as well as programmers of higher-level languages, to allow them
to leverage Morello’s HW capabilities to improve memory security and type safety,
spatial as well as temporal, of their language and programs.

The project consists of three work packages, one to develop the API using C++, Rust,
Go and Dart, one to demonstrate the usability and effectiveness of the API on a series
of example applications by ML-based detection of vulnerabilities and assessment of
the effectiveness of mitigation through the use of the API and one to use HW
capabilities to enhance the debug infrastructure.

https://github.com/zakcutner/rumpsteak
https://dsbd-appcontrol.github.io/
https://github.com/DSbD-AppControl

