
APPCONTROL: ENFORCING APPLICATION BEHAVIOUR
THROUGH TYPE-BASED CONSTRAINTS
Wim Vanderbauwhede1, José Cano1, Laura Voinea1, Nobuko Yoshida2, Martin Vassor2, Klaus
McDonald-Maier3, Xiaojun Zhai3, Ludovico Poli3, Michal Borowski3, Chandrajit Pal3
1University of Glasgow, 2University of Oxford, 3University of Essex

PROJECT OVERVIEW
CHERI capabilities provide fine-grained memory protection, limiting
access privileges of third-party applications. However, in order to
secure program interaction, since capabilities say nothing about
program behaviour, we use Behavioural Types to capture the
behavioural structure of application interfaces.

3rd-party library
Process B

memory space

System
memory space

Process A
memory space

Capability-based type constraint

Run-time behavioural type checking

Behavioural types ensure correctness of behaviour, provided that the
specification is correct. Debugging a specification-based system
demands the ability to debug the specification at run-time.

OUR APPROACH
▶ Develop a Rust API enabling use of CHERI Capabilities.
▶ Develop multiparty session type (MPST) theories and tools to en-

sure capability-based behavioural properties in Rust.
▶ Develop a framework to enable the monitoring and debugging of

capability-supporting Rust code.

CAPABLE LANGUAGE
We are interested in how CHERI-Style Capabilities interplay with
session types in imperative languages such as Rust/C.

Capable is a barebones imperative language with ML-style references
written in Idris2 as a intrinsically-scoped/typed EDSL. Capable is our
experimental language to see how the type-system should work.

RUST API
The Rust API will connect MPSTs with CHERI’s memory control
capabilities. We identify socket layer system calls to be the most
important use case for monitoring adherence to the specification. As
Rust’s POSIX socket library is built on top of the C standard library, we
can address this by modifying the libC to communicate these calls to a
listening daemon. The daemon can maintain a finite-state machine
(FSM) determined by the specification.

Network

Modified C Standard Library

Rust Program
with MPSTs

Daemon

FSM

MPST IN RUST
▶ Developed Rumpsteak, a library for asynchronous MPST in Rust
▶ Support for refined protocols.
▶ Protocols generated from 3rd party library statically type-checked

for behavioural correctness, ensuring deadlock-freedom.
▶ We are currently adapting Rumpsteak for the Rust API, using capa-

bilities in refinements.

An example of refined protocol (excerpt):
choice at B{

More(x : int {x < n}) from B to C;
continue Loop;

} or { ... }

BEHAVIOUR TRACING OF CHERI-ENABLED
PROCESSOR ARCHITECTURE
Please see the additional poster.

MORELLO-HAT: HIGH-LEVEL API AND TOOLING
Wim Vanderbauwhede1, José Cano1, Cristian Urlea1, Perry Gibson1, Nobuko

Yoshida2, Martin Vassor2 Klaus McDonald-Maier3, Xiaojun Zhai3, Ludovico Poli3,

Michal Borowski3, Chandrajit Pal3

The Morello-HAT project intends to create a common API that can be
used by compiler developers as well as programmers of higher-level
languages, to allow them to leverage Morello’s HW capabilities to
improve memory security and type safety, spatial as well as temporal, of
their language and programs.

The project consists of three work packages, one to develop the API
using C++, Rust, Go and Dart, one to demonstrate the usability and
effectiveness of the API on a series of example applications by
ML-based detection of vulnerabilities and assessment of the
effectiveness of mitigation through the use of the API and one to use
HW capabilities to enhance the debug infrastructure.

MORELLO-MAURAUDER
Morello-Maurader is an exploration of the mechanisms that can be used
to constrain program behaviour on the Morello/CheriBSD platform.
Allowed system calls are shimmed by loading a dedicated shared library
and their parameters are filtered using a simulation of refinement types.

Disallowed system calls are filtered out using the capsicum
implementation in CheriBSD.

Future work will look at an equivalent mechanism on Morello-Linux and
integration into the Rust ecosystem, allowing for the implementation of a
behaviourally-typed memory allocator demonstration.

LEARN MORE

ACKNOWLEDGEMENTS
The authors thank the UKRI Digital Security by Design (DSbD)
Programme for funding the AppControl project through grant
EP/V000462/1 and Morello-Hat through grant EP/X015955/1.


