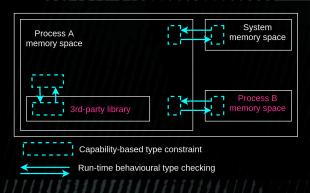
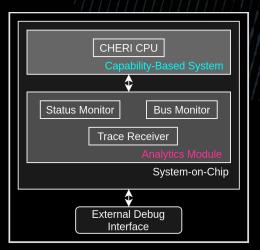
APPCONTROL: ENFORCING APPLICATION BEHAVIOUR THROUGH TYPE-BASED CONSTRAINTS


Wim Vanderbauwhede¹, José Cano¹, Jan de Muijnck-Hughes¹, Cristian Urlea¹, Nobuko Yoshida², Adam Barwell², Klaus McDonald-Maier³, Xiaojun Zhai³, Sangeet Saha³ ¹University of Glasgow, ²Imperial College London, ³University of Essex

BACKGROUND

State-of-the-art techniques can be used to limit access privileges of third-party applications on certain computer systems. CHERI Capabilities provide fine-grained memory protection and isolation that scale better that competing techniques.

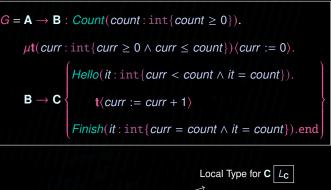
KEY IDEAS


To secure program interaction we need to go beyond access privileges and ensure that a program **follows** the intended behavioural specification. Because Capabilities say nothing about **program behaviour**, we will also use **Behavioural Types** to capture the physical and behavioural structure of application interfaces.

- Behavioural typing supports compile-time checking of program behaviour when its implementation is known, and runtime checking of program behaviour when it is not known.
- We will leverage CHERI's Capabilities to ensure that behavioural types are not modified by parties unknown.

DEBUGGING INFRASTRUCTURE

- Design-by-specification will ensure correctness of behaviour, provided that the specification is correct. Debugging a specification-based system, demands the ability to debug the specification at run-time.
- Debugging system will include continuous diagnostics tools that allow to evaluate the system operation continuously and can identify hardware failure or unusual system behaviour.


The on-chip debugger will monitor system busses, memory, CPUs, etc. Captured data will be used to extract useful features for analysis.

OBJECTIVES

- Develop enforceable specifications based on Capability Hardware
- Demonstrate the effectiveness of Enforceable Specifications
 based on Capability Hardware

SESSION TYPES FOR ENSURING CORRECTNESS OF COMMUNICATIONS

- Multiparty Session Types (MPSTs), traditionally a theory for specifying good communications in distributed and concurrent systems, give a global view (via a Global Type) of the behaviour across individual components within a system.
- Global Types are projected to Local Types, which provide a specification for the communications pertinent to a specific component within the system.
- MPSTs can be used to ensure communications between components conform to a desired specification.
- Rogue components trying to communicate in ways not permitted by the specification can be blocked from doing so via both static checks and dynamic monitoring enabled by MPSTs.
- We will combine and extend existing MPST theory and tooling to integrate with the behavioural type systems used to constrain general program behaviour, and with constraints expressible by CHERI Capabilities.

WORK PACKAGES

▶ WP1 Design a Type System starting from MPST and behavioural types.

- WP2 Developer a compiler and run-time system that can be used to enforce behaviour on CHERI system.
- **WP3** Develop the required Operating System integration.
- **WP4** Develop the debugging system.
- ▶ WP5 Demonstrate the effectiveness of our approach.

PROJECT WEB SITE

https://dsbd-appcontrol.github.io/

ACKNOWLEDGEMENTS

The authors thank the UKRI Digital Security by Design (DSbD) Programme for funding the AppControl project through grant EP/V000462/1.