
APPCONTROL: ENFORCING APPLICATION BEHAVIOUR
THROUGH TYPE-BASED CONSTRAINTS
Wim Vanderbauwhede1, José Cano1, Jan de Muijnck-Hughes1, Cristian Urlea1, Nobuko
Yoshida2, Adam Barwell2, Klaus McDonald-Maier3, Xiaojun Zhai3, Sangeet Saha3

1University of Glasgow, 2Imperial College London, 3University of Essex

BACKGROUND
State-of-the-art techniques can be used to limit access privileges
of third-party applications on certain computer systems. CHERI
Capabilities provide fine-grained memory protection and isolation
that scale better that competing techniques.

KEY IDEAS
To secure program interaction we need to go beyond access
privileges and ensure that a program follows the intended
behavioural specification. Because Capabilities say nothing about
program behaviour, we will also use Behavioural Types to
capture the physical and behavioural structure of application
interfaces.

I Behavioural typing supports compile-time checking of pro-
gram behaviour when its implementation is known, and run-
time checking of program behaviour when it is not known.

I We will leverage CHERI’s Capabilities to ensure that be-
havioural types are not modified by parties unknown.

DEBUGGING INFRASTRUCTURE
I Design-by-specification will ensure correctness of behaviour,

provided that the specification is correct. Debugging a
specification-based system, demands the ability to debug the
specification at run-time.

I Debugging system will include continuous diagnostics tools
that allow to evaluate the system operation continuously and
can identify hardware failure or unusual system behaviour.

I The on-chip debugger will monitor system busses, memory,
CPUs, etc. Captured data will be used to extract useful fea-
tures for analysis.

OBJECTIVES
I Develop enforceable specifications based on Capability Hard-

ware
I Demonstrate the effectiveness of Enforceable Specifications

based on Capability Hardware

SESSION TYPES FOR ENSURING CORRECTNESS
OF COMMUNICATIONS
I Multiparty Session Types (MPSTs), traditionally a theory for

specifying good communications in distributed and concurrent
systems, give a global view (via a Global Type) of the behaviour
across individual components within a system.

I Global Types are projected to Local Types, which provide a
specification for the communications pertinent to a specific
component within the system.

I MPSTs can be used to ensure communications between com-
ponents conform to a desired specification.

I Rogue components trying to communicate in ways not permit-
ted by the specification can be blocked from doing so via both
static checks and dynamic monitoring enabled by MPSTs.

I We will combine and extend existing MPST theory and tooling
to integrate with the behavioural type systems used to constrain
general program behaviour, and with constraints expressible by
CHERI Capabilities.

G = A→ B : Count (count : int{count ≥ 0}).

µt(curr : int{curr ≥ 0 ∧ curr ≤ count})〈curr := 0〉.

B→ C


Hello(it : int{curr < count ∧ it = count}).

t〈curr := curr + 1〉

Finish(it : int{curr = count ∧ it = count}).end



A Global Type G
Projection onto
each Participant

Local Type for A LA

Local Type for B LB

Local Type for C LC

WORK PACKAGES
I WP1 Design a Type System starting from MPST and be-

havioural types.
I WP2 Developer a compiler and run-time system that can be

used to enforce behaviour on CHERI system.
I WP3 Develop the required Operating System integration.
I WP4 Develop the debugging system.
I WP5 Demonstrate the effectiveness of our approach.

PROJECT WEB SITE
https://dsbd-appcontrol.github.io/

ACKNOWLEDGEMENTS
The authors thank the UKRI Digital Security by Design (DSbD)
Programme for funding the AppControl project through grant
EP/V000462/1.

https://dsbd-appcontrol.github.io/

