
APPCONTROL: ENFORCING APPLICATION BEHAVIOUR
THROUGH TYPE-BASED CONSTRAINTS
Wim Vanderbauwhede1, José Cano1, Jan de Muijnck-Hughes1, Laura Voinea1, Nobuko Yoshida2,
Adam Barwell2, Klaus McDonald-Maier3, Xiaojun Zhai3, Ludovico Poli3, Michal Borowski3
1University of Glasgow, 2Imperial College London, 3University of Essex

PROJECT OVERVIEW
CHERI capabilities provide fine-grained memory protection, limiting
access privileges of third-party applications. However, in order to
secure program interaction, since capabilities say nothing about
program behaviour, we use Behavioural Types to capture the
behavioural structure of application interfaces.

3rd-party library
Process B

memory space

System
memory space

Process A
memory space

Capability-based type constraint

Run-time behavioural type checking

Behavioural types will ensure correctness of behaviour, provided that
the specification is correct. Debugging a specification-based system
demands the ability to debug the specification at run-time.

OUR APPROACH

CHERI ISA

Rust-CHERI API

Rumpsteak

Rust

Rust Program
Using Rumpsteak

& CHERI API

Debugger

▶ Develop a Rust API enabling use of CHERI Capabilities.
▶ Develop multiparty session type (MPST) theories and tools to en-

sure capability-based behavioural properties in Rust.
▶ Develop a framework to enable the monitoring and debugging of

capability-supporting Rust code.

ACKNOWLEDGEMENTS
The authors thank the UKRI Digital Security by Design (DSbD)
Programme for funding the AppControl project through grant
EP/V000462/1 and Morello-Hat through grant EP/X015955/1.

RUST API
The Rust API will connect MPSTs with CHERI’s memory control
capabilities. We identify socket layer system calls to be the most
important use case for monitoring adherence to the specification. As
Rust’s POSIX socket library is built on top of the C standard library, we
can address this by modifying the libC to communicate these calls to a
listening daemon. The daemon can maintain a finite-state machine
(FSM) determined by the specification.

Network

Modified C Standard Library

Rust Program
with MPSTs

Daemon

FSM

MPST IN RUST
▶ Developed the Rumpsteak library, supporting asynchronous MPST in

Rust with automatic message reordering.
▶ Communications between two processes or a 3rd party library can

be statically type-checked for behavioural correctness, ensuring
deadlock-freedom of protocols.

▶ We are currently adapting Rumpsteak for the Rust API.
▶ https://github.com/zakcutner/rumpsteak

A ring protocol in Rumpsteak:

1 type Source = Receive<T, Ready, Select<T, SourceChoice>>;

2 enum SourceChoice { Value(Value, Source),

3 Stop(Stop, End) }

4 type Sink = Send<S, Ready, Branch<S, SinkChoice>>;

5 enum SinkChoice { Value(Value, Sink),

6 Stop(Stop, End) }

DEBUGGER AND DIAGNOSTICS TOOLS
▶ Development of prototypes of non-intrusive, on-chip debug system for

CHERI-RISC-V processors.
▶ Extraction of program metrics from the custom implementation of

CHERI Flute based SoC.
▶ Performance comparison of conventional and novel (e.g.

autoencoder-forest) abnormal behaviour detection methods.

PROJECT WEB SITE
https://dsbd-appcontrol.github.io/

MORELLO-HAT: HIGH-LEVEL API AND TOOLING
Wim Vanderbauwhede1, José Cano1, Cristian Urlea1, Nobuko Yoshida2, Adam
Barwell2, Klaus McDonald-Maier3, Xiaojun Zhai3, Ludovico Poli3, Michal Borowski3

The Morello-HAT project intends to create a common API that can be used by
compiler developers as well as programmers of higher-level languages, to allow them
to leverage Morello’s HW capabilities to improve memory security and type safety,
spatial as well as temporal, of their language and programs.

The project consists of three work packages, one to develop the API using C++, Rust,
Go and Dart, one to demonstrate the usability and effectiveness of the API on a series
of example applications by ML-based detection of vulnerabilities and assessment of
the effectiveness of mitigation through the use of the API and one to use HW
capabilities to enhance the debug infrastructure.

https://github.com/zakcutner/rumpsteak
https://dsbd-appcontrol.github.io/

